Author: tayyaba
-
What is AutoKeras?
AutoKeras refers to an AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The purpose of AutoKeras is to make machine learning accessible for everyone. It provides high-level end-to-end APIs such as ImageClassifier or TextClassifier to solve machine learning problems in a few lines, as well as flexible building…
-
Describe the installation & compatibility of Keras.
Keras comes packaged with TensorFlow 2 as tensorflow.keras. However, to start using Keras, simply install TensorFlow 2. Keras/TensorFlow is compatible with: Python 3.5–3.8 Ubuntu 16.04 or later Windows 7 or later macOS 10.12.6 (Sierra) or later.
-
Explain the role of multiple GPUs in Keras.
Keras has built-in industry-strength support for multi-GPU training and distributed multi-worker training, via the tf.distribute API. However, if you have multiple GPUs on your machine, you can train your model on all of them by: Firstly, creating a tf.distribute.MirroredStrategy object. Secondly, creating and compiling your model inside the strategy’s scope. Lastly, calling fit() and evaluate()…
-
What is a Keras Tuner?
Keras Tuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. In this, you can easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms for finding the best hyperparameter values for your models. Further, Keras Tuner comes with Bayesian Optimization, Hyperband,…
-
What do you know about Data preprocessing with Keras?
Once your data is in the form of string/int/float NumpPy arrays, or a Dataset object (or Python generator) that yields batches of string/int/float tensors, it is time to preprocess the data. This can mean: Firstly, Tokenization of string data, followed by token indexing. Secondly, Feature normalization. Thirdly, Rescaling the data to small values. In general,…
-
Explain the examples of data processing in Keras.
Some of the examples include: Firstly, neural networks don’t process raw data, like text files, encoded JPEG image files, or CSV files. They process vectorized & standardized representations. Secondly, text files need to be read into string tensors, then split into words. Finally, the words need to be indexed and turned into integer tensors. Thirdly,…