Gradient descent optimization is considered to be an important concept in data science.
Consider the steps shown below to understand the implementation of gradient descent optimization −
Step 1
Include necessary modules and declaration of x and y variables through which we are going to define the gradient descent optimization.
import tensorflow as tf
x = tf.Variable(2, name = 'x', dtype = tf.float32)
log_x = tf.log(x)
log_x_squared = tf.square(log_x)
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(log_x_squared)

Step 2
Initialize the necessary variables and call the optimizers for defining and calling it with respective function.
init = tf.initialize_all_variables()
def optimize():
with tf.Session() as session:
session.run(init)
print("starting at", "x:", session.run(x), "log(x)^2:", session.run(log_x_squared))
for step in range(10):
session.run(train)
print("step", step, "x:", session.run(x), "log(x)^2:", session.run(log_x_squared))
optimize()
The above line of code generates an output as shown in the screenshot below −

We can see that the necessary epochs and iterations are calculated as shown in the output.
Leave a Reply