1. Setting Up R
First, make sure you have R and RStudio installed on your computer. RStudio provides a user-friendly interface for R.
2. Basic R Syntax
You can start R and type commands in the console. Here are some basic operations:
# Assigning variables
x <- 10
y <- 5
# Basic arithmetic
sum <- x + y
product <- x * y
# Print results
print(sum)
print(product)
3. Working with Vectors
Vectors are one of the most basic data structures in R.
# Creating a vector
my_vector <- c(1, 2, 3, 4, 5)
# Accessing elements
first_element <- my_vector[1] # Access the first element
print(first_element)
# Vector operations
squared_vector <- my_vector^2
print(squared_vector)
4. Data Frames
Data frames are used to store tabular data.
# Creating a data frame
my_data <- data.frame(
Name = c("Alice", "Bob", "Charlie"),
Age = c(25, 30, 35),
Height = c(5.5, 6.0, 5.8)
)
# Viewing the data frame
print(my_data)
# Accessing columns
ages <- my_data$Age
print(ages)
5. Data Manipulation with dplyr
dplyr
is a powerful package for data manipulation.
# Install dplyr if you haven't already
install.packages("dplyr")
library(dplyr)
# Filtering data
filtered_data <- my_data %>% filter(Age > 28)
print(filtered_data)
# Summarizing data
summary_data <- my_data %>% summarize(Average_Age = mean(Age))
print(summary_data)
6. Data Visualization with ggplot2
ggplot2
is a popular package for creating visualizations.
# Install ggplot2 if you haven't already
install.packages("ggplot2")
library(ggplot2)
# Creating a scatter plot
ggplot(my_data, aes(x = Age, y = Height)) +
geom_point() +
ggtitle("Age vs Height") +
xlab("Age") +
ylab("Height")
7. Basic Statistical Analysis
You can perform statistical analyses such as t-tests or linear regression.
# Performing a t-test
t_test_result <- t.test(my_data$Height ~ my_data$Age > 28)
print(t_test_result)
# Linear regression
model <- lm(Height ~ Age, data = my_data)
summary(model)
Leave a Reply