Keras is flexible enough to allow developers to define custom layers, activation functions, and loss functions. This allows for innovative architectures and methods to be explored.
- Example of a custom layer:pythonCopy code
from keras.layers import Layer class CustomLayer(Layer): def __init__(self, units=32): super(CustomLayer, self).__init__() self.units = units def build(self, input_shape): self.w = self.add_weight(shape=(input_shape[-1], self.units), initializer='random_normal', trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w)
Leave a Reply